# Injective maps between finite types
```agda
module univalent-combinatorics.injective-maps where
open import foundation.injective-maps public
```
<details><summary>Imports</summary>
```agda
open import foundation.decidable-types
open import foundation.identity-types
open import foundation.universe-levels
open import univalent-combinatorics.decidable-dependent-function-types
open import univalent-combinatorics.equality-finite-types
open import univalent-combinatorics.finite-types
```
</details>
## Idea
Injectiveness in the context of finite types enjoys further properties.
## Properties
```agda
is-decidable-is-injective-is-finite' :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-finite A → is-finite B → is-decidable ((x y : A) → Id (f x) (f y) → Id x y)
is-decidable-is-injective-is-finite' f HA HB =
is-decidable-Π-is-finite HA
( λ x →
is-decidable-Π-is-finite HA
( λ y →
is-decidable-function-type
( has-decidable-equality-is-finite HB (f x) (f y))
( has-decidable-equality-is-finite HA x y)))
is-decidable-is-injective-is-finite :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) →
is-finite A → is-finite B → is-decidable (is-injective f)
is-decidable-is-injective-is-finite f HA HB =
is-decidable-iff
( λ p {x} {y} → p x y)
( λ p x y → p)
( is-decidable-is-injective-is-finite' f HA HB)
```