# Permutations of standard finite types
```agda
{-# OPTIONS --lossy-unification #-}
module finite-group-theory.permutations-standard-finite-types where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import finite-group-theory.transpositions
open import foundation.action-on-identifications-functions
open import foundation.automorphisms
open import foundation.cartesian-product-types
open import foundation.coproduct-types
open import foundation.decidable-propositions
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.equality-dependent-pair-types
open import foundation.equivalence-extensionality
open import foundation.equivalences
open import foundation.equivalences-maybe
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.negated-equality
open import foundation.propositions
open import foundation.sets
open import foundation.unit-type
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition
open import lists.functoriality-lists
open import lists.lists
open import univalent-combinatorics.2-element-decidable-subtypes
open import univalent-combinatorics.equality-standard-finite-types
open import univalent-combinatorics.finite-types
open import univalent-combinatorics.standard-finite-types
```
</details>
## Idea
A permutation of `Fin n` is an automorphism of `Fin n`.
## Definitions
```agda
Permutation : (n : ℕ) → UU lzero
Permutation n = Aut (Fin n)
```
## Properties
### Every permutation on `Fin n` can be described as a composite of transpositions
```agda
list-transpositions-permutation-Fin' :
(n : ℕ) (f : Permutation (succ-ℕ n)) →
(x : Fin (succ-ℕ n)) → Id (map-equiv f (inr star)) x →
( list
( Σ
( Fin (succ-ℕ n) → Decidable-Prop lzero)
( λ P →
has-cardinality 2
( Σ (Fin (succ-ℕ n)) (type-Decidable-Prop ∘ P)))))
list-transpositions-permutation-Fin' zero-ℕ f x p = nil
list-transpositions-permutation-Fin' (succ-ℕ n) f (inl x) p =
cons
( t)
( map-list
( Fin-succ-Fin-transposition (succ-ℕ n))
( list-transpositions-permutation-Fin'
( n)
( f')
( map-equiv f' (inr star))
( refl)))
where
t :
Σ ( Fin (succ-ℕ (succ-ℕ n)) → Decidable-Prop lzero)
( λ P →
has-cardinality 2
( Σ (Fin (succ-ℕ (succ-ℕ n))) (type-Decidable-Prop ∘ P)))
t = standard-2-Element-Decidable-Subtype
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)
f' : (Permutation (succ-ℕ n))
f' =
map-inv-equiv
( extend-equiv-Maybe (Fin-Set (succ-ℕ n)))
( pair
( transposition t ∘e f)
( ( ap (λ y → map-transposition t y) p) ∙
( right-computation-standard-transposition
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl))))
list-transpositions-permutation-Fin' (succ-ℕ n) f (inr star) p =
map-list
( Fin-succ-Fin-transposition (succ-ℕ n))
( list-transpositions-permutation-Fin' n f' (map-equiv f' (inr star)) refl)
where
f' : (Permutation (succ-ℕ n))
f' = map-inv-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) (pair f p)
list-transpositions-permutation-Fin :
(n : ℕ) (f : Permutation n) →
( list
( Σ
( Fin n → Decidable-Prop lzero)
( λ P → has-cardinality 2 (Σ (Fin n) (type-Decidable-Prop ∘ P)))))
list-transpositions-permutation-Fin zero-ℕ f = nil
list-transpositions-permutation-Fin (succ-ℕ n) f =
list-transpositions-permutation-Fin' n f (map-equiv f (inr star)) refl
abstract
retraction-permutation-list-transpositions-Fin' :
(n : ℕ) (f : Permutation (succ-ℕ n)) →
(x : Fin (succ-ℕ n)) → Id (map-equiv f (inr star)) x →
(y z : Fin (succ-ℕ n)) → Id (map-equiv f y) z →
Id
( map-equiv
( permutation-list-transpositions
( list-transpositions-permutation-Fin (succ-ℕ n) f))
( y))
( map-equiv f y)
retraction-permutation-list-transpositions-Fin'
zero-ℕ f (inr star) p (inr star) z q =
inv p
retraction-permutation-list-transpositions-Fin'
(succ-ℕ n) f (inl x) p (inl y) (inl z) q =
ap
(λ w →
map-equiv
( permutation-list-transpositions
( list-transpositions-permutation-Fin'
(succ-ℕ n) f (pr1 w) (pr2 w)))
( inl y)) {y = pair (inl x) p}
( eq-pair-Σ
( p)
( eq-is-prop
( is-set-type-Set
( Fin-Set (succ-ℕ (succ-ℕ n)))
( map-equiv f (inr star))
( inl x)))) ∙
( ap
( map-equiv (transposition t))
( correct-Fin-succ-Fin-transposition-list
( succ-ℕ n)
( list-transpositions-permutation-Fin'
n _ (map-equiv F' (inr star)) refl)
( inl y)) ∙
(ap
( λ g →
map-equiv
( transposition t)
( map-equiv
( pr1 (map-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) g))
( inl y)))
{ x =
permutation-list-transpositions
( list-transpositions-permutation-Fin (succ-ℕ n) _)}
{ y = F'}
( eq-htpy-equiv
( λ w → retraction-permutation-list-transpositions-Fin'
n _ (map-equiv F' (inr star)) refl w (map-equiv F' w) refl)) ∙
( (ap (map-equiv (transposition t)) lemma) ∙
(lemma2 ∙ inv q))))
where
t :
Σ ( Fin (succ-ℕ (succ-ℕ n)) → Decidable-Prop lzero)
( λ P →
has-cardinality 2
( Σ (Fin (succ-ℕ (succ-ℕ n))) (type-Decidable-Prop ∘ P)))
t =
standard-2-Element-Decidable-Subtype
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)
P :
Σ ( Permutation (succ-ℕ (succ-ℕ n)))
( λ g → Id (map-equiv g (inr star)) (inr star))
P =
pair
( transposition t ∘e f)
( ( ap (λ y → map-transposition t y) p) ∙
( right-computation-standard-transposition
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)))
F' : (Permutation (succ-ℕ n))
F' = map-inv-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) P
lemma2 : (map-equiv (transposition t) (inl z)) = (inl z)
lemma2 =
is-fixed-point-standard-transposition
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)
( inl z)
( neq-inr-inl)
( λ r →
neq-inr-inl
( is-injective-equiv f (p ∙ (r ∙ inv q))))
lemma :
Id
( map-equiv
( pr1 (map-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) F'))
( inl y))
( inl z)
lemma =
( ap
( λ e → map-equiv (pr1 (map-equiv e P)) (inl y))
( right-inverse-law-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))))) ∙
( ap (map-equiv (transposition t)) q ∙ lemma2)
retraction-permutation-list-transpositions-Fin'
(succ-ℕ n) f (inl x) p (inl y) (inr star) q =
ap
(λ w →
map-equiv
( permutation-list-transpositions
( list-transpositions-permutation-Fin'
(succ-ℕ n) f (pr1 w) (pr2 w)))
( inl y)) {y = pair (inl x) p}
( eq-pair-Σ
( p)
( eq-is-prop
( is-set-type-Set
( Fin-Set (succ-ℕ (succ-ℕ n)))
( map-equiv f (inr star))
( inl x)))) ∙
( ap
( map-equiv (transposition t))
( correct-Fin-succ-Fin-transposition-list
( succ-ℕ n)
( list-transpositions-permutation-Fin'
n _ (map-equiv F' (inr star)) refl)
( inl y)) ∙
(ap
( λ g →
map-equiv
( transposition t)
( map-equiv
( pr1 (map-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) g))
( inl y)))
{ x =
permutation-list-transpositions
( list-transpositions-permutation-Fin (succ-ℕ n) _)}
{ y = F'}
( eq-htpy-equiv
( λ w →
retraction-permutation-list-transpositions-Fin'
n _ (map-equiv F' (inr star)) refl w (map-equiv F' w) refl)) ∙
( ( ap (map-equiv (transposition t)) lemma) ∙
( ( right-computation-standard-transposition
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)) ∙
( inv q)))))
where
t :
Σ ( Fin (succ-ℕ (succ-ℕ n)) → Decidable-Prop lzero)
( λ P →
has-cardinality 2
( Σ (Fin (succ-ℕ (succ-ℕ n))) (type-Decidable-Prop ∘ P)))
t =
standard-2-Element-Decidable-Subtype
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)
P :
Σ ( Permutation (succ-ℕ (succ-ℕ n)))
( λ g → Id (map-equiv g (inr star)) (inr star))
P = pair
( transposition t ∘e f)
( ( ap (map-transposition t) p) ∙
right-computation-standard-transposition
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl))
F' : (Permutation (succ-ℕ n))
F' = map-inv-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) P
lemma :
Id
( map-equiv
( pr1
( map-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) F'))
( inl y))
(inl x)
lemma =
( ap
( λ e → map-equiv (pr1 (map-equiv e P)) (inl y))
( right-inverse-law-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))))) ∙
( ap
( map-equiv (transposition t))
( q) ∙
( left-computation-standard-transposition
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)))
retraction-permutation-list-transpositions-Fin'
(succ-ℕ n) f (inl x) p (inr star) z q =
ap
(λ w →
map-equiv
( permutation-list-transpositions
( list-transpositions-permutation-Fin'
(succ-ℕ n) f (pr1 w) (pr2 w)))
( inr star)) {y = pair (inl x) p}
( eq-pair-Σ
( p)
( eq-is-prop
( is-set-type-Set
( Fin-Set (succ-ℕ (succ-ℕ n)))
( map-equiv f (inr star))
( inl x)))) ∙
( ap
( map-equiv (transposition t))
( correct-Fin-succ-Fin-transposition-list
( succ-ℕ n)
( list-transpositions-permutation-Fin'
n _ (map-equiv F' (inr star)) refl)
( inr star)) ∙
( ap
( map-equiv (transposition t))
( pr2 (map-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) F')) ∙
( ( left-computation-standard-transposition
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)) ∙
( inv p))))
where
t :
Σ ( Fin (succ-ℕ (succ-ℕ n)) → Decidable-Prop lzero)
( λ P →
has-cardinality 2
( Σ (Fin (succ-ℕ (succ-ℕ n))) (type-Decidable-Prop ∘ P)))
t =
standard-2-Element-Decidable-Subtype
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)
F' : (Permutation (succ-ℕ n))
F' =
map-inv-equiv
( extend-equiv-Maybe (Fin-Set (succ-ℕ n)))
( pair
( transposition t ∘e f)
( ( ap (map-transposition t) p) ∙
right-computation-standard-transposition
( has-decidable-equality-Fin (succ-ℕ (succ-ℕ n)))
{ inr star}
{ inl x}
( neq-inr-inl)))
retraction-permutation-list-transpositions-Fin'
(succ-ℕ n) f (inr star) p (inl y) (inl z) q =
ap
( λ w →
map-equiv
( permutation-list-transpositions
( list-transpositions-permutation-Fin'
(succ-ℕ n) f (pr1 w) (pr2 w)))
( inl y))
{y = pair (inr star) p}
( eq-pair-Σ
( p)
( eq-is-prop
( is-set-type-Set
( Fin-Set (succ-ℕ (succ-ℕ n)))
( map-equiv f (inr star))
( inr star)))) ∙
( ( correct-Fin-succ-Fin-transposition-list
( succ-ℕ n)
( list-transpositions-permutation-Fin'
n f' (map-equiv f' (inr star)) refl)
( inl y)) ∙
( ( ap
( inl)
( retraction-permutation-list-transpositions-Fin'
n f' (map-equiv f' (inr star)) refl y (map-equiv f' y) refl)) ∙
( computation-inv-extend-equiv-Maybe (Fin-Set (succ-ℕ n)) f p y)))
where
f' : (Permutation (succ-ℕ n))
f' = map-inv-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) (pair f p)
retraction-permutation-list-transpositions-Fin'
(succ-ℕ n) f (inr star) p (inl y) (inr star) q =
ex-falso
( neq-inr-inl
( is-injective-equiv f (p ∙ inv q)))
retraction-permutation-list-transpositions-Fin'
(succ-ℕ n) f (inr star) p (inr star) z q =
ap
(λ w →
map-equiv
( permutation-list-transpositions
( list-transpositions-permutation-Fin'
(succ-ℕ n) f (pr1 w) (pr2 w)))
( inr star)) {y = pair (inr star) p}
( eq-pair-Σ
( p)
( eq-is-prop
( is-set-type-Set
( Fin-Set (succ-ℕ (succ-ℕ n)))
( map-equiv f (inr star))
( inr star)))) ∙
( ( correct-Fin-succ-Fin-transposition-list
( succ-ℕ n)
( list-transpositions-permutation-Fin'
n f' (map-equiv f' (inr star)) refl)
( inr star)) ∙
( inv p))
where
f' : (Permutation (succ-ℕ n))
f' = map-inv-equiv (extend-equiv-Maybe (Fin-Set (succ-ℕ n))) (pair f p)
retraction-permutation-list-transpositions-Fin :
(n : ℕ) (f : Permutation n) →
htpy-equiv
( permutation-list-transpositions
( list-transpositions-permutation-Fin n f))
( f)
retraction-permutation-list-transpositions-Fin zero-ℕ f ()
retraction-permutation-list-transpositions-Fin (succ-ℕ n) f y =
retraction-permutation-list-transpositions-Fin'
n f (map-equiv f (inr star)) refl y (map-equiv f y) refl
```
```agda
permutation-list-standard-transpositions-Fin :
(n : ℕ) →
list (Σ (Fin n × Fin n) (λ (i , j) → i ≠ j)) →
Permutation n
permutation-list-standard-transpositions-Fin n =
fold-list
( id-equiv)
( λ (_ , neq) p →
standard-transposition (has-decidable-equality-Fin n) neq ∘e p)
list-standard-transpositions-permutation-Fin :
(n : ℕ) (f : Permutation n) →
list (Σ (Fin n × Fin n) (λ (i , j) → i ≠ j))
list-standard-transpositions-permutation-Fin n f =
map-list
( λ P →
( element-two-elements-transposition-Fin P ,
other-element-two-elements-transposition-Fin P) ,
neq-elements-two-elements-transposition-Fin P)
( list-transpositions-permutation-Fin n f)
private
htpy-permutation-list :
(n : ℕ)
(l : list
(2-Element-Decidable-Subtype lzero (Fin (succ-ℕ n)))) →
htpy-equiv
( permutation-list-standard-transpositions-Fin
( succ-ℕ n)
( map-list
( λ P →
( element-two-elements-transposition-Fin P ,
other-element-two-elements-transposition-Fin P) ,
neq-elements-two-elements-transposition-Fin P)
( l)))
( permutation-list-transpositions l)
htpy-permutation-list n nil = refl-htpy
htpy-permutation-list n (cons P l) =
( htpy-two-elements-transpositon-Fin P ·r
map-equiv
( permutation-list-standard-transpositions-Fin
( succ-ℕ n)
( map-list
( λ P →
( element-two-elements-transposition-Fin P ,
other-element-two-elements-transposition-Fin P) ,
neq-elements-two-elements-transposition-Fin P)
( l)))) ∙h
( map-transposition P ·l
htpy-permutation-list n l)
retraction-permutation-list-standard-transpositions-Fin :
(n : ℕ) (f : Permutation n) →
htpy-equiv
( permutation-list-standard-transpositions-Fin
( n)
( list-standard-transpositions-permutation-Fin n f))
( f)
retraction-permutation-list-standard-transpositions-Fin 0 f ()
retraction-permutation-list-standard-transpositions-Fin (succ-ℕ n) f =
htpy-permutation-list n (list-transpositions-permutation-Fin (succ-ℕ n) f) ∙h
retraction-permutation-list-transpositions-Fin (succ-ℕ n) f
```