# Vectors of set quotients
```agda
{-# OPTIONS --lossy-unification #-}
module foundation.vectors-set-quotients where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.action-on-identifications-functions
open import foundation.cartesian-products-set-quotients
open import foundation.dependent-pair-types
open import foundation.equality-cartesian-product-types
open import foundation.function-extensionality
open import foundation.multivariable-operations
open import foundation.products-equivalence-relations
open import foundation.raising-universe-levels
open import foundation.reflecting-maps-equivalence-relations
open import foundation.set-quotients
open import foundation.sets
open import foundation.unit-type
open import foundation.universal-property-set-quotients
open import foundation.universe-levels
open import foundation-core.cartesian-product-types
open import foundation-core.coproduct-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalence-relations
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.propositions
open import foundation-core.retractions
open import foundation-core.sections
open import linear-algebra.vectors
open import univalent-combinatorics.standard-finite-types
```
</details>
## Idea
Say we have a family of types `A1`, ..., `An` each equipped with an equivalence
relation `Ri`. Then, the set quotient of a vector with these types is the vector
of the set quotients of each `Ai`.
## Definition
### The induced relation on the vector of types
```agda
all-sim-equivalence-relation :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
( equivalence-relation l2 (multivariable-input n A))
all-sim-equivalence-relation {l1} {l2} zero-ℕ A R =
raise-indiscrete-equivalence-relation l2 (raise-unit l1)
all-sim-equivalence-relation (succ-ℕ n) A R =
product-equivalence-relation (R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x)))
```
### The set quotient of a vector of types
```agda
set-quotient-vector :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
UU (l1 ⊔ l2)
set-quotient-vector n A R =
multivariable-input n (λ i → ( set-quotient (R i)))
is-set-set-quotient-vector :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
is-set (set-quotient-vector n A R)
is-set-set-quotient-vector zero-ℕ A R = is-set-raise-unit
is-set-set-quotient-vector (succ-ℕ n) A R =
is-set-product
( is-set-set-quotient (R (inr star)))
( is-set-set-quotient-vector n
( tail-functional-vec n A)
( λ x → R (inl x)))
set-quotient-vector-Set :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
Set (l1 ⊔ l2)
pr1 (set-quotient-vector-Set n A R) =
set-quotient-vector n A R
pr2 (set-quotient-vector-Set n A R) =
is-set-set-quotient-vector n A R
quotient-vector-map :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
multivariable-input n A →
set-quotient-vector n A R
quotient-vector-map zero-ℕ A R a = raise-star
pr1 (quotient-vector-map (succ-ℕ n) A R (a0 , a)) =
quotient-map (R (inr star)) (a0)
pr2 (quotient-vector-map (succ-ℕ n) A R a) =
quotient-vector-map n
( tail-functional-vec n A)
( λ x → R (inl x))
( tail-multivariable-input n A a)
reflects-quotient-vector-map :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
reflects-equivalence-relation
( all-sim-equivalence-relation n A R)
( quotient-vector-map n A R)
reflects-quotient-vector-map zero-ℕ A R p = refl
reflects-quotient-vector-map (succ-ℕ n) A R (p , p') =
eq-pair
( apply-effectiveness-quotient-map' (R (inr star)) p)
( reflects-quotient-vector-map n
( tail-functional-vec n A)
( λ x → R (inl x)) p')
reflecting-map-quotient-vector-map :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
reflecting-map-equivalence-relation
( all-sim-equivalence-relation n A R)
( set-quotient-vector n A R)
pr1 (reflecting-map-quotient-vector-map n A R) =
quotient-vector-map n A R
pr2 (reflecting-map-quotient-vector-map n A R) =
reflects-quotient-vector-map n A R
equiv-set-quotient-vector :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
set-quotient-vector n A R ≃ set-quotient (all-sim-equivalence-relation n A R)
pr1 (equiv-set-quotient-vector zero-ℕ A R) _ = quotient-map _ raise-star
pr1 (pr1 (pr2 (equiv-set-quotient-vector zero-ℕ A R))) _ = raise-star
pr2 (pr1 (pr2 (equiv-set-quotient-vector {l1} {l2} zero-ℕ A R))) =
induction-set-quotient
( raise-indiscrete-equivalence-relation l2 (raise-unit l1))
( λ x → pair _ (is-set-set-quotient _ _ x))
( λ x → apply-effectiveness-quotient-map' _ raise-star)
pr1 (pr2 (pr2 (equiv-set-quotient-vector zero-ℕ A R))) _ = raise-star
pr2 (pr2 (pr2 (equiv-set-quotient-vector zero-ℕ A R))) (map-raise star) = refl
equiv-set-quotient-vector (succ-ℕ n) A R =
equivalence-reasoning
set-quotient (R (inr star)) ×
( set-quotient-vector n
( tail-functional-vec n A)
( λ x → R (inl x)))
≃ set-quotient (R (inr star)) ×
( set-quotient
(all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x))))
by lemma
≃ set-quotient (all-sim-equivalence-relation (succ-ℕ n) A R)
by (equiv-quotient-product-product-set-quotient _ _)
where
lemma :
( set-quotient (R (inr star)) ×
( set-quotient-vector n
( tail-functional-vec n A)
(λ x → R (inl x)))) ≃
( set-quotient (R (inr star)) ×
( set-quotient
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x)))))
pr1 (pr1 lemma (qa0 , qa)) = qa0
pr2 (pr1 lemma (qa0 , qa)) = map-equiv (equiv-set-quotient-vector n _ _) qa
pr1 (pr1 (pr1 (pr2 lemma)) (qa0 , qa)) = qa0
pr2 (pr1 (pr1 (pr2 lemma)) (qa0 , qa)) =
map-inv-equiv (equiv-set-quotient-vector n _ _) qa
pr2 (pr1 (pr2 lemma)) (qa0 , qa) =
eq-pair refl (is-section-map-inv-equiv (equiv-set-quotient-vector n _ _) qa)
pr1 (pr1 (pr2 (pr2 lemma)) (qa0 , qa)) = qa0
pr2 (pr1 (pr2 (pr2 lemma)) (qa0 , qa)) =
map-inv-equiv (equiv-set-quotient-vector n _ _) qa
pr2 (pr2 (pr2 lemma)) (qa0 , qa) =
eq-pair
( refl)
( is-retraction-map-inv-equiv (equiv-set-quotient-vector n _ _) qa)
map-equiv-equiv-set-quotient-vector-quotient-map :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
( map-equiv (equiv-set-quotient-vector n A R) ∘
( quotient-vector-map n A R)) ~
( quotient-map (all-sim-equivalence-relation n A R))
map-equiv-equiv-set-quotient-vector-quotient-map zero-ℕ A R (map-raise star) =
refl
map-equiv-equiv-set-quotient-vector-quotient-map (succ-ℕ n) A R (a0 , a) =
ap
( λ qa →
map-equiv
( equiv-quotient-product-product-set-quotient _ _)
( quotient-map (R (inr star)) a0 , qa))
( map-equiv-equiv-set-quotient-vector-quotient-map n
( tail-functional-vec n A)
( λ x → R (inl x)) a) ∙
( triangle-uniqueness-product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n (λ z → tail-functional-vec n A z)
( λ i → R (inl i)))
( a0 , a))
inv-precomp-vector-set-quotient :
{ l l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
(X : Set l) →
reflecting-map-equivalence-relation
( all-sim-equivalence-relation n A R)
( type-Set X) →
((set-quotient-vector n A R) → type-Set X)
inv-precomp-vector-set-quotient zero-ℕ A R X f (map-raise star) =
pr1 f raise-star
inv-precomp-vector-set-quotient (succ-ℕ n) A R X f (qa0 , qa) =
inv-precomp-set-quotient-product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x)))
( X)
( f)
( qa0 , map-equiv (equiv-set-quotient-vector n _ _) qa)
abstract
is-section-inv-precomp-vector-set-quotient :
{ l l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
( X : Set l) →
( precomp-Set-Quotient
( all-sim-equivalence-relation n A R)
( set-quotient-vector-Set n A R)
( reflecting-map-quotient-vector-map n A R)
( X)) ∘
( inv-precomp-vector-set-quotient n A R X) ~
( id)
is-section-inv-precomp-vector-set-quotient {l} {l1} {l2} 0 A R X f =
eq-pair-Σ
( eq-htpy (λ where (map-raise star) → refl))
( eq-is-prop
( is-prop-reflects-equivalence-relation
( raise-indiscrete-equivalence-relation l2 (raise-unit l1))
( X)
( map-reflecting-map-equivalence-relation _ f)))
is-section-inv-precomp-vector-set-quotient (succ-ℕ n) A R X f =
eq-pair-Σ
( eq-htpy
( λ (a0 , a) →
( ap
( inv-precomp-set-quotient-product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x))) X f)
( eq-pair-eq-fiber
( map-equiv-equiv-set-quotient-vector-quotient-map n _ _ a)) ∙
( htpy-eq
( ap
( map-reflecting-map-equivalence-relation _)
( is-section-inv-precomp-set-quotient-product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x))) X f))
( a0 , a)))))
( eq-is-prop
( is-prop-reflects-equivalence-relation
( all-sim-equivalence-relation (succ-ℕ n) A R)
( X)
( map-reflecting-map-equivalence-relation _ f)))
section-precomp-vector-set-quotient :
{ l l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
( X : Set l) →
( section
( precomp-Set-Quotient
( all-sim-equivalence-relation n A R)
( set-quotient-vector-Set n A R)
( reflecting-map-quotient-vector-map n A R)
( X)))
pr1 (section-precomp-vector-set-quotient n A R X) =
inv-precomp-vector-set-quotient n A R X
pr2 (section-precomp-vector-set-quotient n A R X) =
is-section-inv-precomp-vector-set-quotient n A R X
abstract
is-retraction-inv-precomp-vector-set-quotient :
{ l l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
( X : Set l) →
( retraction
( precomp-Set-Quotient
( all-sim-equivalence-relation n A R)
( set-quotient-vector-Set n A R)
( reflecting-map-quotient-vector-map n A R)
( X)))
pr1 (is-retraction-inv-precomp-vector-set-quotient n A R X) =
inv-precomp-vector-set-quotient n A R X
pr2 (is-retraction-inv-precomp-vector-set-quotient zero-ℕ A R X) f =
eq-htpy (λ where (map-raise star) → refl)
pr2 (is-retraction-inv-precomp-vector-set-quotient (succ-ℕ n) A R X) f =
ap (_∘ set-quotient-vector-product-set-quotient)
is-inv-map-inv-equiv-f ∙ lemma-f
where
precomp-f :
reflecting-map-equivalence-relation
( product-equivalence-relation (R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x))))
( type-Set X)
precomp-f =
precomp-Set-Quotient
( product-equivalence-relation (R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x))))
( set-quotient-vector-Set (succ-ℕ n) A R)
( reflecting-map-quotient-vector-map (succ-ℕ n) A R) X f
set-quotient-vector-product-set-quotient :
( set-quotient-vector (succ-ℕ n) A R) →
( product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x))))
set-quotient-vector-product-set-quotient (qa0' , qa') =
(qa0' , map-equiv (equiv-set-quotient-vector n _ _) qa')
map-inv-equiv-f :
( product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x)))) →
( type-Set X)
map-inv-equiv-f (qa0 , qa) =
f (qa0 , map-inv-equiv (equiv-set-quotient-vector n _ _) qa)
lemma-f : (map-inv-equiv-f ∘ set-quotient-vector-product-set-quotient) = f
lemma-f =
eq-htpy
( λ (qa0 , qa) →
( ap f
( eq-pair-eq-fiber
( is-retraction-map-inv-equiv
( equiv-set-quotient-vector n _ _)
( qa)))))
is-retraction-inv-precomp-f :
( inv-precomp-set-quotient-product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x)))
( X)
( precomp-Set-Quotient
( product-equivalence-relation (R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x))))
( product-set-quotient-Set
( R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x))))
( reflecting-map-product-quotient-map (R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x))))
( X)
( map-inv-equiv-f))) =
map-inv-equiv-f
is-retraction-inv-precomp-f =
is-retraction-inv-precomp-set-quotient-product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x)))
( X)
( map-inv-equiv-f)
is-inv-map-inv-equiv-f :
( inv-precomp-set-quotient-product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n
( tail-functional-vec n A)
( λ x → R (inl x)))
( X)
( precomp-f)) =
map-inv-equiv-f
is-inv-map-inv-equiv-f =
ap
( inv-precomp-set-quotient-product-set-quotient
( R (inr star))
( all-sim-equivalence-relation n (tail-functional-vec n A)
( λ x → R (inl x)))
( X))
( eq-pair-Σ
( ap ( _∘ quotient-vector-map _ A R) (inv lemma-f) ∙
( ap
( map-inv-equiv-f ∘_)
( eq-htpy
( λ (a0 , a) →
( eq-pair-eq-fiber
( map-equiv-equiv-set-quotient-vector-quotient-map
_ _ _ a))))))
( eq-is-prop
( is-prop-reflects-equivalence-relation
( product-equivalence-relation
( R (inr star))
( all-sim-equivalence-relation n _ _))
( X) _))) ∙
is-retraction-inv-precomp-f
is-set-quotient-vector-set-quotient :
{ l1 l2 : Level}
( n : ℕ)
( A : functional-vec (UU l1) n)
( R : (i : Fin n) → equivalence-relation l2 (A i)) →
is-set-quotient
( all-sim-equivalence-relation n A R)
( set-quotient-vector-Set n A R)
( reflecting-map-quotient-vector-map n A R)
pr1 (is-set-quotient-vector-set-quotient n A R X) =
section-precomp-vector-set-quotient n A R X
pr2 (is-set-quotient-vector-set-quotient n A R X) =
is-retraction-inv-precomp-vector-set-quotient n A R X
```