# Arrays
```agda
module lists.arrays where
```
<details><summary>Imports</summary>
```agda
open import elementary-number-theory.natural-numbers
open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.equality-dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.unit-type
open import foundation.universe-levels
open import linear-algebra.vectors
open import lists.lists
open import univalent-combinatorics.involution-standard-finite-types
open import univalent-combinatorics.standard-finite-types
```
</details>
## Idea
An array is a pair of a natural number `n`, and a function from `Fin n` to `A`.
We show that arrays and lists are equivalent.
```agda
array : {l : Level} → UU l → UU l
array A = Σ ℕ (λ n → functional-vec A n)
module _
{l : Level} {A : UU l}
where
length-array : array A → ℕ
length-array = pr1
functional-vec-array : (t : array A) → Fin (length-array t) → A
functional-vec-array = pr2
empty-array : array A
pr1 (empty-array) = zero-ℕ
pr2 (empty-array) ()
is-empty-array-Prop : array A → Prop lzero
is-empty-array-Prop (zero-ℕ , t) = unit-Prop
is-empty-array-Prop (succ-ℕ n , t) = empty-Prop
is-empty-array : array A → UU lzero
is-empty-array = type-Prop ∘ is-empty-array-Prop
is-nonempty-array-Prop : array A → Prop lzero
is-nonempty-array-Prop (zero-ℕ , t) = empty-Prop
is-nonempty-array-Prop (succ-ℕ n , t) = unit-Prop
is-nonempty-array : array A → UU lzero
is-nonempty-array = type-Prop ∘ is-nonempty-array-Prop
head-array : (t : array A) → is-nonempty-array t → A
head-array (succ-ℕ n , f) _ = f (inr star)
tail-array : (t : array A) → is-nonempty-array t → array A
tail-array (succ-ℕ n , f) _ = n , f ∘ inl
cons-array : A → array A → array A
cons-array a t =
( succ-ℕ (length-array t) ,
rec-coproduct (functional-vec-array t) (λ _ → a))
revert-array : array A → array A
revert-array (n , t) = (n , λ k → t (opposite-Fin n k))
```
### The definition of `fold-vec`
```agda
fold-vec :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (b : B) (μ : A → (B → B)) →
{n : ℕ} → vec A n → B
fold-vec b μ {0} _ = b
fold-vec b μ (a ∷ l) = μ a (fold-vec b μ l)
```
## Properties
### The types of lists and arrays are equivalent
```agda
module _
{l : Level} {A : UU l}
where
list-vec : (n : ℕ) → (vec A n) → list A
list-vec zero-ℕ _ = nil
list-vec (succ-ℕ n) (x ∷ l) = cons x (list-vec n l)
vec-list : (l : list A) → vec A (length-list l)
vec-list nil = empty-vec
vec-list (cons x l) = x ∷ vec-list l
is-section-vec-list : (λ l → list-vec (length-list l) (vec-list l)) ~ id
is-section-vec-list nil = refl
is-section-vec-list (cons x l) = ap (cons x) (is-section-vec-list l)
is-retraction-vec-list :
( λ (x : Σ ℕ (λ n → vec A n)) →
( length-list (list-vec (pr1 x) (pr2 x)) ,
vec-list (list-vec (pr1 x) (pr2 x)))) ~
id
is-retraction-vec-list (zero-ℕ , empty-vec) = refl
is-retraction-vec-list (succ-ℕ n , (x ∷ v)) =
ap
( λ v → succ-ℕ (pr1 v) , (x ∷ (pr2 v)))
( is-retraction-vec-list (n , v))
list-array : array A → list A
list-array (n , t) = list-vec n (listed-vec-functional-vec n t)
array-list : list A → array A
array-list l =
( length-list l , functional-vec-vec (length-list l) (vec-list l))
is-section-array-list : (list-array ∘ array-list) ~ id
is-section-array-list nil = refl
is-section-array-list (cons x l) = ap (cons x) (is-section-array-list l)
is-retraction-array-list : (array-list ∘ list-array) ~ id
is-retraction-array-list (n , t) =
ap
( λ (n , v) → (n , functional-vec-vec n v))
( is-retraction-vec-list (n , listed-vec-functional-vec n t)) ∙
eq-pair-eq-fiber (is-retraction-functional-vec-vec n t)
equiv-list-array : array A ≃ list A
pr1 equiv-list-array = list-array
pr2 equiv-list-array =
is-equiv-is-invertible
array-list
is-section-array-list
is-retraction-array-list
equiv-array-list : list A ≃ array A
pr1 equiv-array-list = array-list
pr2 equiv-array-list =
is-equiv-is-invertible
list-array
is-retraction-array-list
is-section-array-list
```
### Computational rules of the equivalence between arrays and lists
```agda
compute-length-list-list-vec :
(n : ℕ) (v : vec A n) →
length-list (list-vec n v) = n
compute-length-list-list-vec zero-ℕ v = refl
compute-length-list-list-vec (succ-ℕ n) (x ∷ v) =
ap succ-ℕ (compute-length-list-list-vec n v)
compute-length-list-list-array :
(t : array A) → length-list (list-array t) = length-array t
compute-length-list-list-array t =
compute-length-list-list-vec
( length-array t)
( listed-vec-functional-vec (length-array t) (functional-vec-array t))
```
### An element `x` is in a vector `v` iff it is in `list-vec n v`
```agda
is-in-list-is-in-vec-list :
(l : list A) (x : A) →
x ∈-vec (vec-list l) → x ∈-list l
is-in-list-is-in-vec-list (cons y l) .y (is-head .y .(vec-list l)) =
is-head y l
is-in-list-is-in-vec-list (cons y l) x (is-in-tail .x .y .(vec-list l) I) =
is-in-tail x y l (is-in-list-is-in-vec-list l x I)
is-in-vec-list-is-in-list :
(l : list A) (x : A) →
x ∈-list l → x ∈-vec (vec-list l)
is-in-vec-list-is-in-list (cons x l) x (is-head .x l) =
is-head x (vec-list l)
is-in-vec-list-is-in-list (cons y l) x (is-in-tail .x .y l I) =
is-in-tail x y (vec-list l) (is-in-vec-list-is-in-list l x I)
```
### Link between `fold-list` and `fold-vec`
```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
(b : B)
(μ : A → (B → B))
where
htpy-fold-list-fold-vec :
(l : list A) →
fold-vec b μ (vec-list l) = fold-list b μ l
htpy-fold-list-fold-vec nil = refl
htpy-fold-list-fold-vec (cons x l) =
ap (μ x) (htpy-fold-list-fold-vec l)
```