# The universal property of the circle
```agda
module synthetic-homotopy-theory.universal-property-circle where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-dependent-functions
open import foundation.action-on-identifications-functions
open import foundation.constant-type-families
open import foundation.contractible-maps
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.fibers-of-maps
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.sections
open import foundation.transport-along-identifications
open import foundation.universe-levels
open import synthetic-homotopy-theory.free-loops
```
</details>
## Definitions
### Evaluating an ordinary function at a free loop
```agda
module _
{l1 l2 : Level} {X : UU l1} (α : free-loop X) (Y : UU l2)
where
ev-free-loop : (X → Y) → free-loop Y
pr1 (ev-free-loop f) = f (base-free-loop α)
pr2 (ev-free-loop f) = ap f (loop-free-loop α)
```
### The universal property of the circle
```agda
module _
{l1 : Level} {X : UU l1} (α : free-loop X)
where
universal-property-circle : UUω
universal-property-circle =
{l : Level} (Y : UU l) → is-equiv (ev-free-loop α Y)
```
### Evaluating a dependent function at a free loop
```agda
module _
{l1 l2 : Level} {X : UU l1} (α : free-loop X) (P : X → UU l2)
where
ev-free-loop-Π : ((x : X) → P x) → free-dependent-loop α P
pr1 (ev-free-loop-Π f) = f (base-free-loop α)
pr2 (ev-free-loop-Π f) = apd f (loop-free-loop α)
```
### The induction principle of the circle
```agda
module _
{l1 : Level} {X : UU l1} (α : free-loop X)
where
induction-principle-circle : UUω
induction-principle-circle =
{l2 : Level} (P : X → UU l2) → section (ev-free-loop-Π α P)
module _
{l1 l2 : Level} {X : UU l1} (α : free-loop X)
(H : induction-principle-circle α) (P : X → UU l2)
(β : free-dependent-loop α P)
where
function-induction-principle-circle : (x : X) → P x
function-induction-principle-circle = pr1 (H P) β
compute-induction-principle-circle :
(ev-free-loop-Π α P function-induction-principle-circle) = β
compute-induction-principle-circle = pr2 (H P) β
```
### The dependent universal property of the circle
```agda
module _
{l1 : Level} {X : UU l1} (α : free-loop X)
where
dependent-universal-property-circle : UUω
dependent-universal-property-circle =
{l2 : Level} (P : X → UU l2) → is-equiv (ev-free-loop-Π α P)
```
## Properties
### The induction principle of the circle implies the dependent universal property of the circle
To prove this, we have to show that the section of ev-free-loop-Π is also a
retraction. This construction is also by the induction principle of the circle,
but it requires (a minimal amount of) preparations.
```agda
module _
{l1 : Level} {X : UU l1} (α : free-loop X)
where
free-dependent-loop-htpy :
{l2 : Level} {P : X → UU l2} {f g : (x : X) → P x} →
( Eq-free-dependent-loop α P
( ev-free-loop-Π α P f)
( ev-free-loop-Π α P g)) →
( free-dependent-loop α (λ x → Id (f x) (g x)))
pr1 (free-dependent-loop-htpy {l2} {P} {f} {g} (p , q)) = p
pr2 (free-dependent-loop-htpy {l2} {P} {f} {g} (p , q)) =
map-compute-dependent-identification-eq-value f g (loop-free-loop α) p p q
is-retraction-ind-circle :
( ind-circle : induction-principle-circle α)
{ l2 : Level} (P : X → UU l2) →
( ( function-induction-principle-circle α ind-circle P) ∘
( ev-free-loop-Π α P)) ~
( id)
is-retraction-ind-circle ind-circle P f =
eq-htpy
( function-induction-principle-circle α ind-circle
( eq-value
( function-induction-principle-circle α ind-circle P
( ev-free-loop-Π α P f))
( f))
( free-dependent-loop-htpy
( Eq-free-dependent-loop-eq α P _ _
( compute-induction-principle-circle α ind-circle P
( ev-free-loop-Π α P f)))))
abstract
dependent-universal-property-induction-principle-circle :
induction-principle-circle α →
dependent-universal-property-circle α
dependent-universal-property-induction-principle-circle ind-circle P =
is-equiv-is-invertible
( function-induction-principle-circle α ind-circle P)
( compute-induction-principle-circle α ind-circle P)
( is-retraction-ind-circle ind-circle P)
```
### Uniqueness of the maps obtained from the universal property of the circle
```agda
module _
{l1 : Level} {X : UU l1} (α : free-loop X)
where
abstract
uniqueness-universal-property-circle :
universal-property-circle α →
{l2 : Level} (Y : UU l2) (α' : free-loop Y) →
is-contr (Σ (X → Y) (λ f → Eq-free-loop (ev-free-loop α Y f) α'))
uniqueness-universal-property-circle up-circle Y α' =
is-contr-is-equiv'
( fiber (ev-free-loop α Y) α')
( tot (λ f → Eq-eq-free-loop (ev-free-loop α Y f) α'))
( is-equiv-tot-is-fiberwise-equiv
( λ f → is-equiv-Eq-eq-free-loop (ev-free-loop α Y f) α'))
( is-contr-map-is-equiv (up-circle Y) α')
```
### Uniqueness of the dependent functions obtained from the dependent universal property of the circle
```agda
module _
{l1 : Level} {X : UU l1} (α : free-loop X)
where
uniqueness-dependent-universal-property-circle :
dependent-universal-property-circle α →
{l2 : Level} {P : X → UU l2} (k : free-dependent-loop α P) →
is-contr
( Σ ( (x : X) → P x)
( λ h → Eq-free-dependent-loop α P (ev-free-loop-Π α P h) k))
uniqueness-dependent-universal-property-circle dup-circle {l2} {P} k =
is-contr-is-equiv'
( fiber (ev-free-loop-Π α P) k)
( tot (λ h → Eq-free-dependent-loop-eq α P (ev-free-loop-Π α P h) k))
( is-equiv-tot-is-fiberwise-equiv
(λ h → is-equiv-Eq-free-dependent-loop-eq α P (ev-free-loop-Π α P h) k))
( is-contr-map-is-equiv (dup-circle P) k)
```
### The dependent universal property of the circle implies the universal property of the circle
```agda
module _
{l1 l2 : Level} {X : UU l1} (α : free-loop X) (Y : UU l2)
where
triangle-comparison-free-loop :
map-compute-free-dependent-loop-constant-type-family α Y ∘
ev-free-loop α Y ~
ev-free-loop-Π α (λ _ → Y)
triangle-comparison-free-loop f =
eq-Eq-free-dependent-loop α
( λ x → Y)
( map-compute-free-dependent-loop-constant-type-family α Y
( ev-free-loop α Y f))
( ev-free-loop-Π α (λ x → Y) f)
( refl ,
right-unit ∙ (inv (apd-constant-type-family f (loop-free-loop α))))
module _
{l1 : Level} {X : UU l1} (α : free-loop X)
where
abstract
universal-property-dependent-universal-property-circle :
dependent-universal-property-circle α →
universal-property-circle α
universal-property-dependent-universal-property-circle dup-circle Y =
is-equiv-top-map-triangle
( ev-free-loop-Π α (λ x → Y))
( map-compute-free-dependent-loop-constant-type-family α Y)
( ev-free-loop α Y)
( inv-htpy (triangle-comparison-free-loop α Y))
( is-equiv-map-equiv
( compute-free-dependent-loop-constant-type-family α Y))
( dup-circle (λ x → Y))
```
### The induction principle of the circle implies the universal property of the circle
```agda
module _
{l1 : Level} {X : UU l1} (α : free-loop X)
where
abstract
universal-property-induction-principle-circle :
induction-principle-circle α →
universal-property-circle α
universal-property-induction-principle-circle X =
universal-property-dependent-universal-property-circle α
( dependent-universal-property-induction-principle-circle α X)
```
### The dependent universal property of the circle with respect to propositions
```agda
abstract
is-connected-circle' :
{ l1 l2 : Level} {X : UU l1} (l : free-loop X) →
( dup-circle : dependent-universal-property-circle l)
( P : X → UU l2) (is-prop-P : (x : X) → is-prop (P x)) →
P (base-free-loop l) → (x : X) → P x
is-connected-circle' l dup-circle P is-prop-P p =
map-inv-is-equiv
( dup-circle P)
( pair p (center (is-prop-P _ (tr P (loop-free-loop l) p) p)))
```