# Strict categories
```agda
module category-theory.strict-categories where
```
<details><summary>Imports</summary>
```agda
open import category-theory.categories
open import category-theory.composition-operations-on-binary-families-of-sets
open import category-theory.isomorphisms-in-precategories
open import category-theory.nonunital-precategories
open import category-theory.precategories
open import category-theory.preunivalent-categories
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.propositions
open import foundation.sets
open import foundation.subtypes
open import foundation.universe-levels
```
</details>
## Idea
A {{#concept "strict category" Agda=Strict-Category}} is a
[precategory](category-theory.precategories.md) for which the type of objects
form a [set](foundation-core.sets.md). Such categories are the set-theoretic
analogue to [(univalent) categories](category-theory.categories.md), and have
the disadvantages that strict categorical constructions may generally fail to be
invariant under equivalences, and that the
([essentially surjective](category-theory.essentially-surjective-functors-precategories.md)/[fully-faithful](category-theory.fully-faithful-functors-precategories.md))-factorization
system on [functors](category-theory.functors-precategories.md) requires the
[axiom of choice](foundation.axiom-of-choice.md).
## Definitions
### The predicate on precategories of being a strict category
```agda
module _
{l1 l2 : Level} (C : Precategory l1 l2)
where
is-strict-category-prop-Precategory : Prop l1
is-strict-category-prop-Precategory =
is-set-Prop (obj-Precategory C)
is-strict-category-Precategory : UU l1
is-strict-category-Precategory =
type-Prop is-strict-category-prop-Precategory
```
### The predicate on preunivalent categories of being a strict category
```agda
module _
{l1 l2 : Level} (C : Preunivalent-Category l1 l2)
where
is-strict-category-prop-Preunivalent-Category : Prop l1
is-strict-category-prop-Preunivalent-Category =
is-strict-category-prop-Precategory (precategory-Preunivalent-Category C)
is-strict-category-Preunivalent-Category : UU l1
is-strict-category-Preunivalent-Category =
type-Prop is-strict-category-prop-Preunivalent-Category
```
### The predicate on categories of being a strict category
We note that [(univalent) categories](category-theory.categories.md) that are
strict form a very restricted class of strict categories where every
[isomorphism](category-theory.isomorphisms-in-categories.md)-set is a
[proposition](foundation-core.propositions.md). Such a category is called
[gaunt](category-theory.gaunt-categories.md).
```agda
module _
{l1 l2 : Level} (C : Category l1 l2)
where
is-strict-category-prop-Category : Prop l1
is-strict-category-prop-Category =
is-strict-category-prop-Precategory (precategory-Category C)
is-strict-category-Category : UU l1
is-strict-category-Category = type-Prop is-strict-category-prop-Category
```
### The type of strict categories
```agda
Strict-Category : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
Strict-Category l1 l2 = Σ (Precategory l1 l2) is-strict-category-Precategory
module _
{l1 l2 : Level} (C : Strict-Category l1 l2)
where
precategory-Strict-Category : Precategory l1 l2
precategory-Strict-Category = pr1 C
obj-Strict-Category : UU l1
obj-Strict-Category = obj-Precategory precategory-Strict-Category
is-set-obj-Strict-Category : is-set obj-Strict-Category
is-set-obj-Strict-Category = pr2 C
hom-set-Strict-Category : obj-Strict-Category → obj-Strict-Category → Set l2
hom-set-Strict-Category = hom-set-Precategory precategory-Strict-Category
hom-Strict-Category : obj-Strict-Category → obj-Strict-Category → UU l2
hom-Strict-Category = hom-Precategory precategory-Strict-Category
is-set-hom-Strict-Category :
(x y : obj-Strict-Category) → is-set (hom-Strict-Category x y)
is-set-hom-Strict-Category =
is-set-hom-Precategory precategory-Strict-Category
comp-hom-Strict-Category :
{x y z : obj-Strict-Category} →
hom-Strict-Category y z → hom-Strict-Category x y → hom-Strict-Category x z
comp-hom-Strict-Category = comp-hom-Precategory precategory-Strict-Category
associative-comp-hom-Strict-Category :
{x y z w : obj-Strict-Category}
(h : hom-Strict-Category z w)
(g : hom-Strict-Category y z)
(f : hom-Strict-Category x y) →
comp-hom-Strict-Category (comp-hom-Strict-Category h g) f =
comp-hom-Strict-Category h (comp-hom-Strict-Category g f)
associative-comp-hom-Strict-Category =
associative-comp-hom-Precategory precategory-Strict-Category
associative-composition-operation-Strict-Category :
associative-composition-operation-binary-family-Set hom-set-Strict-Category
associative-composition-operation-Strict-Category =
associative-composition-operation-Precategory precategory-Strict-Category
id-hom-Strict-Category : {x : obj-Strict-Category} → hom-Strict-Category x x
id-hom-Strict-Category = id-hom-Precategory precategory-Strict-Category
left-unit-law-comp-hom-Strict-Category :
{x y : obj-Strict-Category} (f : hom-Strict-Category x y) →
comp-hom-Strict-Category id-hom-Strict-Category f = f
left-unit-law-comp-hom-Strict-Category =
left-unit-law-comp-hom-Precategory precategory-Strict-Category
right-unit-law-comp-hom-Strict-Category :
{x y : obj-Strict-Category} (f : hom-Strict-Category x y) →
comp-hom-Strict-Category f id-hom-Strict-Category = f
right-unit-law-comp-hom-Strict-Category =
right-unit-law-comp-hom-Precategory precategory-Strict-Category
is-unital-composition-operation-Strict-Category :
is-unital-composition-operation-binary-family-Set
hom-set-Strict-Category
comp-hom-Strict-Category
is-unital-composition-operation-Strict-Category =
is-unital-composition-operation-Precategory precategory-Strict-Category
is-strict-category-Strict-Category :
is-strict-category-Precategory precategory-Strict-Category
is-strict-category-Strict-Category = pr2 C
```
### The underlying nonunital precategory of a strict category
```agda
module _
{l1 l2 : Level} (C : Strict-Category l1 l2)
where
nonunital-precategory-Strict-Category : Nonunital-Precategory l1 l2
nonunital-precategory-Strict-Category =
nonunital-precategory-Precategory (precategory-Strict-Category C)
```
### The underlying preunivalent category of a strict category
```agda
module _
{l1 l2 : Level} (C : Strict-Category l1 l2)
where
abstract
is-preunivalent-Strict-Category :
is-preunivalent-Precategory (precategory-Strict-Category C)
is-preunivalent-Strict-Category x y =
is-emb-is-injective
( is-set-type-subtype
( is-iso-prop-Precategory (precategory-Strict-Category C))
( is-set-hom-Strict-Category C x y))
( λ _ → eq-is-prop (is-set-obj-Strict-Category C x y))
preunivalent-category-Strict-Category : Preunivalent-Category l1 l2
pr1 preunivalent-category-Strict-Category = precategory-Strict-Category C
pr2 preunivalent-category-Strict-Category = is-preunivalent-Strict-Category
```
### The total hom-set of a strict category
```agda
module _
{l1 l2 : Level} (C : Strict-Category l1 l2)
where
total-hom-Strict-Category : UU (l1 ⊔ l2)
total-hom-Strict-Category =
total-hom-Precategory (precategory-Strict-Category C)
obj-total-hom-Strict-Category :
total-hom-Strict-Category → obj-Strict-Category C × obj-Strict-Category C
obj-total-hom-Strict-Category =
obj-total-hom-Precategory (precategory-Strict-Category C)
is-set-total-hom-Strict-Category :
is-set total-hom-Strict-Category
is-set-total-hom-Strict-Category =
is-trunc-total-hom-is-trunc-obj-Precategory
( precategory-Strict-Category C)
( is-set-obj-Strict-Category C)
total-hom-set-Strict-Category : Set (l1 ⊔ l2)
total-hom-set-Strict-Category =
total-hom-truncated-type-is-trunc-obj-Precategory
( precategory-Strict-Category C)
( is-set-obj-Strict-Category C)
```
### Equalities induce morphisms
```agda
module _
{l1 l2 : Level} (C : Strict-Category l1 l2)
where
hom-eq-Strict-Category :
(x y : obj-Strict-Category C) → x = y → hom-Strict-Category C x y
hom-eq-Strict-Category = hom-eq-Precategory (precategory-Strict-Category C)
hom-inv-eq-Strict-Category :
(x y : obj-Strict-Category C) → x = y → hom-Strict-Category C y x
hom-inv-eq-Strict-Category =
hom-inv-eq-Precategory (precategory-Strict-Category C)
```
### Pre- and postcomposition by a morphism
```agda
precomp-hom-Strict-Category :
{l1 l2 : Level} (C : Strict-Category l1 l2) {x y : obj-Strict-Category C}
(f : hom-Strict-Category C x y) (z : obj-Strict-Category C) →
hom-Strict-Category C y z → hom-Strict-Category C x z
precomp-hom-Strict-Category C =
precomp-hom-Precategory (precategory-Strict-Category C)
postcomp-hom-Strict-Category :
{l1 l2 : Level} (C : Strict-Category l1 l2) {x y : obj-Strict-Category C}
(f : hom-Strict-Category C x y) (z : obj-Strict-Category C) →
hom-Strict-Category C z x → hom-Strict-Category C z y
postcomp-hom-Strict-Category C =
postcomp-hom-Precategory (precategory-Strict-Category C)
```
## See also
- [Preunivalent categories](category-theory.preunivalent-categories.md) for the
common generalization of (univalent) categories and strict categories.
- [Gaunt categories](category-theory.gaunt-categories.md) for the common
intersection of (univalent) categories and strict categories.
## External links
- [Strict Precategories](https://1lab.dev/Cat.Strict.html#strict-precategories)
at 1lab
- [strict category](https://ncatlab.org/nlab/show/strict+category) at $n$Lab
- [Category (mathematics)](<https://en.wikipedia.org/wiki/Category_(mathematics)>)
at Wikipedia