# Isolated elements
```agda
module foundation.isolated-elements where
```
<details><summary>Imports</summary>
```agda
open import foundation.action-on-identifications-functions
open import foundation.constant-maps
open import foundation.decidable-embeddings
open import foundation.decidable-equality
open import foundation.decidable-maps
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.fundamental-theorem-of-identity-types
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.maybe
open import foundation.negated-equality
open import foundation.negation
open import foundation.sets
open import foundation.type-arithmetic-unit-type
open import foundation.unit-type
open import foundation.universe-levels
open import foundation-core.contractible-types
open import foundation-core.coproduct-types
open import foundation-core.decidable-propositions
open import foundation-core.empty-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.propositions
open import foundation-core.subtypes
open import foundation-core.torsorial-type-families
open import foundation-core.transport-along-identifications
```
</details>
## Idea
An element `a : A` is considered to be **isolated** if `a = x` is
[decidable](foundation.decidable-types.md) for any `x`.
## Definitions
### Isolated elements
```agda
is-isolated :
{l1 : Level} {X : UU l1} (a : X) → UU l1
is-isolated {l1} {X} a = (x : X) → is-decidable (a = x)
isolated-element :
{l1 : Level} (X : UU l1) → UU l1
isolated-element X = Σ X is-isolated
module _
{l : Level} {X : UU l} (x : isolated-element X)
where
element-isolated-element : X
element-isolated-element = pr1 x
is-isolated-isolated-element : is-isolated element-isolated-element
is-isolated-isolated-element = pr2 x
```
### Complements of isolated elements
```agda
complement-isolated-element :
{l1 : Level} (X : UU l1) → isolated-element X → UU l1
complement-isolated-element X x =
Σ X (λ y → element-isolated-element x ≠ y)
```
## Properties
### An element is isolated if and only if the constant map pointing at it is decidable
```agda
module _
{l1 : Level} {A : UU l1} (a : A)
where
is-decidable-point-is-isolated :
is-isolated a → is-decidable-map (point a)
is-decidable-point-is-isolated d x =
is-decidable-equiv (compute-fiber-point a x) (d x)
is-isolated-is-decidable-point :
is-decidable-map (point a) → is-isolated a
is-isolated-is-decidable-point d x =
is-decidable-equiv' (compute-fiber-point a x) (d x)
cases-Eq-isolated-element :
is-isolated a → (x : A) → is-decidable (a = x) → UU lzero
cases-Eq-isolated-element H x (inl p) = unit
cases-Eq-isolated-element H x (inr f) = empty
abstract
is-prop-cases-Eq-isolated-element :
(d : is-isolated a) (x : A) (dx : is-decidable (a = x)) →
is-prop (cases-Eq-isolated-element d x dx)
is-prop-cases-Eq-isolated-element d x (inl p) = is-prop-unit
is-prop-cases-Eq-isolated-element d x (inr f) = is-prop-empty
Eq-isolated-element : is-isolated a → A → UU lzero
Eq-isolated-element d x = cases-Eq-isolated-element d x (d x)
abstract
is-prop-Eq-isolated-element :
(d : is-isolated a) (x : A) → is-prop (Eq-isolated-element d x)
is-prop-Eq-isolated-element d x =
is-prop-cases-Eq-isolated-element d x (d x)
Eq-isolated-element-Prop : is-isolated a → A → Prop lzero
pr1 (Eq-isolated-element-Prop d x) = Eq-isolated-element d x
pr2 (Eq-isolated-element-Prop d x) = is-prop-Eq-isolated-element d x
decide-reflexivity :
(d : is-decidable (a = a)) → Σ (a = a) (λ p → inl p = d)
pr1 (decide-reflexivity (inl p)) = p
pr2 (decide-reflexivity (inl p)) = refl
decide-reflexivity (inr f) = ex-falso (f refl)
abstract
refl-Eq-isolated-element : (d : is-isolated a) → Eq-isolated-element d a
refl-Eq-isolated-element d =
tr
( cases-Eq-isolated-element d a)
( pr2 (decide-reflexivity (d a)))
( star)
abstract
Eq-eq-isolated-element :
(d : is-isolated a) {x : A} → a = x → Eq-isolated-element d x
Eq-eq-isolated-element d refl = refl-Eq-isolated-element d
abstract
center-total-Eq-isolated-element :
(d : is-isolated a) → Σ A (Eq-isolated-element d)
pr1 (center-total-Eq-isolated-element d) = a
pr2 (center-total-Eq-isolated-element d) = refl-Eq-isolated-element d
cases-contraction-total-Eq-isolated-element :
(d : is-isolated a) (x : A) (dx : is-decidable (a = x))
(e : cases-Eq-isolated-element d x dx) → a = x
cases-contraction-total-Eq-isolated-element d x (inl p) e = p
contraction-total-Eq-isolated-element :
(d : is-isolated a) (t : Σ A (Eq-isolated-element d)) →
center-total-Eq-isolated-element d = t
contraction-total-Eq-isolated-element d (x , e) =
eq-type-subtype
( Eq-isolated-element-Prop d)
( cases-contraction-total-Eq-isolated-element d x (d x) e)
is-torsorial-Eq-isolated-element :
(d : is-isolated a) → is-torsorial (Eq-isolated-element d)
pr1 (is-torsorial-Eq-isolated-element d) =
center-total-Eq-isolated-element d
pr2 (is-torsorial-Eq-isolated-element d) =
contraction-total-Eq-isolated-element d
abstract
is-equiv-Eq-eq-isolated-element :
(d : is-isolated a) (x : A) → is-equiv (Eq-eq-isolated-element d {x})
is-equiv-Eq-eq-isolated-element d =
fundamental-theorem-id
( is-torsorial-Eq-isolated-element d)
( λ x → Eq-eq-isolated-element d {x})
abstract
equiv-Eq-eq-isolated-element :
(d : is-isolated a) (x : A) → (a = x) ≃ Eq-isolated-element d x
pr1 (equiv-Eq-eq-isolated-element d x) = Eq-eq-isolated-element d
pr2 (equiv-Eq-eq-isolated-element d x) = is-equiv-Eq-eq-isolated-element d x
abstract
is-prop-eq-isolated-element : (d : is-isolated a) (x : A) → is-prop (a = x)
is-prop-eq-isolated-element d x =
is-prop-equiv
( equiv-Eq-eq-isolated-element d x)
( is-prop-Eq-isolated-element d x)
is-contr-loop-space-isolated-element :
(d : is-isolated a) → is-contr (a = a)
is-contr-loop-space-isolated-element d =
is-proof-irrelevant-is-prop (is-prop-eq-isolated-element d a) refl
abstract
is-emb-point-is-isolated : is-isolated a → is-emb (point a)
is-emb-point-is-isolated d star =
fundamental-theorem-id
( is-contr-equiv
( a = a)
( left-unit-law-product)
( is-proof-irrelevant-is-prop
( is-prop-eq-isolated-element d a)
( refl)))
( λ x → ap (λ y → a))
```
### Being an isolated element is a property
```agda
is-prop-is-isolated :
{l1 : Level} {A : UU l1} (a : A) → is-prop (is-isolated a)
is-prop-is-isolated a =
is-prop-has-element
( λ H → is-prop-Π (is-prop-is-decidable ∘ is-prop-eq-isolated-element a H))
is-isolated-Prop :
{l1 : Level} {A : UU l1} (a : A) → Prop l1
pr1 (is-isolated-Prop a) = is-isolated a
pr2 (is-isolated-Prop a) = is-prop-is-isolated a
inclusion-isolated-element :
{l1 : Level} (A : UU l1) → isolated-element A → A
inclusion-isolated-element A = pr1
is-emb-inclusion-isolated-element :
{l1 : Level} (A : UU l1) → is-emb (inclusion-isolated-element A)
is-emb-inclusion-isolated-element A = is-emb-inclusion-subtype is-isolated-Prop
has-decidable-equality-isolated-element :
{l1 : Level} (A : UU l1) → has-decidable-equality (isolated-element A)
has-decidable-equality-isolated-element A (x , dx) (y , dy) =
is-decidable-equiv
( equiv-ap-inclusion-subtype is-isolated-Prop)
( dx y)
is-set-isolated-element :
{l1 : Level} (A : UU l1) → is-set (isolated-element A)
is-set-isolated-element A =
is-set-has-decidable-equality (has-decidable-equality-isolated-element A)
module _
{l1 : Level} {A : UU l1} (a : isolated-element A)
where
point-isolated-element : unit → A
point-isolated-element = point (element-isolated-element a)
is-emb-point-isolated-element : is-emb point-isolated-element
is-emb-point-isolated-element =
is-emb-comp
( inclusion-isolated-element A)
( point a)
( is-emb-inclusion-isolated-element A)
( is-emb-is-injective
( is-set-isolated-element A)
( λ p → refl))
emb-point-isolated-element : unit ↪ A
pr1 emb-point-isolated-element = point-isolated-element
pr2 emb-point-isolated-element = is-emb-point-isolated-element
is-decidable-point-isolated-element :
is-decidable-map point-isolated-element
is-decidable-point-isolated-element x =
is-decidable-product is-decidable-unit (is-isolated-isolated-element a x)
is-decidable-emb-point-isolated-element :
is-decidable-emb point-isolated-element
pr1 is-decidable-emb-point-isolated-element =
is-emb-point-isolated-element
pr2 is-decidable-emb-point-isolated-element =
is-decidable-point-isolated-element
decidable-emb-point-isolated-element : unit ↪ᵈ A
pr1 decidable-emb-point-isolated-element =
point-isolated-element
pr2 decidable-emb-point-isolated-element =
is-decidable-emb-point-isolated-element
```
### Types with isolated elements can be equipped with a Maybe-structure
```agda
map-maybe-structure-isolated-element :
{l1 : Level} (X : UU l1) (x : isolated-element X) →
Maybe (complement-isolated-element X x) → X
map-maybe-structure-isolated-element X (x , d) (inl (y , f)) = y
map-maybe-structure-isolated-element X (x , d) (inr star) = x
cases-map-inv-maybe-structure-isolated-element :
{l1 : Level} (X : UU l1) (x : isolated-element X) →
(y : X) → is-decidable (pr1 x = y) → Maybe (complement-isolated-element X x)
cases-map-inv-maybe-structure-isolated-element X (x , dx) y (inl p) =
inr star
cases-map-inv-maybe-structure-isolated-element X (x , dx) y (inr f) =
inl (y , f)
map-inv-maybe-structure-isolated-element :
{l1 : Level} (X : UU l1) (x : isolated-element X) →
X → Maybe (complement-isolated-element X x)
map-inv-maybe-structure-isolated-element X (x , d) y =
cases-map-inv-maybe-structure-isolated-element X (x , d) y (d y)
cases-is-section-map-inv-maybe-structure-isolated-element :
{l1 : Level} (X : UU l1) (x : isolated-element X) →
(y : X) (d : is-decidable (pr1 x = y)) →
( map-maybe-structure-isolated-element X x
( cases-map-inv-maybe-structure-isolated-element X x y d)) =
( y)
cases-is-section-map-inv-maybe-structure-isolated-element X
(x , dx) .x (inl refl) =
refl
cases-is-section-map-inv-maybe-structure-isolated-element X (x , dx) y (inr f) =
refl
is-section-map-inv-maybe-structure-isolated-element :
{l1 : Level} (X : UU l1) (x : isolated-element X) →
( map-maybe-structure-isolated-element X x ∘
map-inv-maybe-structure-isolated-element X x) ~ id
is-section-map-inv-maybe-structure-isolated-element X (x , d) y =
cases-is-section-map-inv-maybe-structure-isolated-element X (x , d) y (d y)
is-retraction-map-inv-maybe-structure-isolated-element :
{l1 : Level} (X : UU l1) (x : isolated-element X) →
( map-inv-maybe-structure-isolated-element X x ∘
map-maybe-structure-isolated-element X x) ~ id
is-retraction-map-inv-maybe-structure-isolated-element
X (x , dx) (inl (y , f)) =
ap
( cases-map-inv-maybe-structure-isolated-element X (x , dx) y)
( eq-is-prop (is-prop-is-decidable (is-prop-eq-isolated-element x dx y)))
is-retraction-map-inv-maybe-structure-isolated-element X (x , dx) (inr star) =
ap
( cases-map-inv-maybe-structure-isolated-element X (x , dx) x)
{ x = dx (map-maybe-structure-isolated-element X (x , dx) (inr star))}
{ y = inl refl}
( eq-is-prop (is-prop-is-decidable (is-prop-eq-isolated-element x dx x)))
is-equiv-map-maybe-structure-isolated-element :
{l1 : Level} (X : UU l1) (x : isolated-element X) →
is-equiv (map-maybe-structure-isolated-element X x)
is-equiv-map-maybe-structure-isolated-element X x =
is-equiv-is-invertible
( map-inv-maybe-structure-isolated-element X x)
( is-section-map-inv-maybe-structure-isolated-element X x)
( is-retraction-map-inv-maybe-structure-isolated-element X x)
equiv-maybe-structure-isolated-element :
{l1 : Level} (X : UU l1) (x : isolated-element X) →
Maybe (complement-isolated-element X x) ≃ X
pr1 (equiv-maybe-structure-isolated-element X x) =
map-maybe-structure-isolated-element X x
pr2 (equiv-maybe-structure-isolated-element X x) =
is-equiv-map-maybe-structure-isolated-element X x
maybe-structure-isolated-element :
{l1 : Level} {X : UU l1} → isolated-element X → maybe-structure X
pr1 (maybe-structure-isolated-element {l1} {X} x) =
complement-isolated-element X x
pr2 (maybe-structure-isolated-element {l1} {X} x) =
equiv-maybe-structure-isolated-element X x
```
```agda
equiv-complement-isolated-element :
{l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) (x : isolated-element X)
(y : isolated-element Y) (p : map-equiv e (pr1 x) = pr1 y) →
complement-isolated-element X x ≃ complement-isolated-element Y y
equiv-complement-isolated-element e x y p =
equiv-Σ
( λ z → pr1 y ≠ z)
( e)
( λ z →
equiv-neg
( equiv-concat (inv p) (map-equiv e z) ∘e (equiv-ap e (pr1 x) z)))
```
```agda
inclusion-complement-isolated-element :
{l1 : Level} {X : UU l1} (x : isolated-element X) →
complement-isolated-element X x → X
inclusion-complement-isolated-element x = pr1
natural-inclusion-equiv-complement-isolated-element :
{l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) (x : isolated-element X)
(y : isolated-element Y) (p : map-equiv e (pr1 x) = pr1 y) →
( inclusion-complement-isolated-element y ∘
map-equiv (equiv-complement-isolated-element e x y p)) ~
( map-equiv e ∘ inclusion-complement-isolated-element x)
natural-inclusion-equiv-complement-isolated-element e x y p (x' , f) = refl
```