# Dependent pair types of finite types
```agda
module univalent-combinatorics.dependent-pair-types where
open import foundation.dependent-pair-types public
```
<details><summary>Imports</summary>
```agda
open import foundation.complements
open import foundation.contractible-types
open import foundation.decidable-types
open import foundation.empty-types
open import foundation.equality-dependent-pair-types
open import foundation.equivalences
open import foundation.fibers-of-maps
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.functoriality-propositional-truncation
open import foundation.identity-types
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.sections
open import foundation.sets
open import foundation.subtypes
open import foundation.torsorial-type-families
open import foundation.transport-along-identifications
open import foundation.type-arithmetic-coproduct-types
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universe-levels
open import univalent-combinatorics.coproduct-types
open import univalent-combinatorics.counting
open import univalent-combinatorics.counting-dependent-pair-types
open import univalent-combinatorics.decidable-propositions
open import univalent-combinatorics.equality-finite-types
open import univalent-combinatorics.finite-choice
open import univalent-combinatorics.finite-types
```
</details>
## Idea
In this file we study finiteness in relation to dependent pair types.
## Properties
### A dependent sum of finite types indexed by a finite type is finite
```agda
abstract
is-finite-Σ :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
is-finite A → ((a : A) → is-finite (B a)) → is-finite (Σ A B)
is-finite-Σ {A = A} {B} H K =
apply-universal-property-trunc-Prop H
( is-finite-Prop (Σ A B))
( λ (e : count A) →
apply-universal-property-trunc-Prop
( finite-choice H K)
( is-finite-Prop (Σ A B))
( is-finite-count ∘ (count-Σ e)))
Σ-𝔽 : {l1 l2 : Level} (A : 𝔽 l1) (B : type-𝔽 A → 𝔽 l2) → 𝔽 (l1 ⊔ l2)
pr1 (Σ-𝔽 A B) = Σ (type-𝔽 A) (λ a → type-𝔽 (B a))
pr2 (Σ-𝔽 A B) =
is-finite-Σ
( is-finite-type-𝔽 A)
( λ a → is-finite-type-𝔽 (B a))
```
### If `A` and `Σ A B` are finite, then eacy `B a` is finite
```agda
abstract
is-finite-fiber-is-finite-Σ :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
is-finite A → is-finite (Σ A B) → (a : A) → is-finite (B a)
is-finite-fiber-is-finite-Σ {l1} {l2} {A} {B} f g a =
apply-universal-property-trunc-Prop f
( is-finite-Prop (B a))
( λ e → map-trunc-Prop (λ h → count-fiber-count-Σ-count-base e h a) g)
```
### If `B` is a family of finite types over `A` equipped with a (mere) section and `Σ A B` is finite, then `A` is finite
```agda
abstract
is-finite-base-is-finite-Σ-section :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} (b : (a : A) → B a) →
is-finite (Σ A B) → ((a : A) → is-finite (B a)) → is-finite A
is-finite-base-is-finite-Σ-section {l1} {l2} {A} {B} b f g =
apply-universal-property-trunc-Prop f
( is-finite-Prop A)
( λ e →
is-finite-count
( count-equiv
( ( equiv-total-fiber (map-section-family b)) ∘e
( equiv-tot
( λ t →
( equiv-tot
( λ x → equiv-eq-pair-Σ (map-section-family b x) t)) ∘e
( ( associative-Σ A
( λ (x : A) → Id x (pr1 t))
( λ s → Id (tr B (pr2 s) (b (pr1 s))) (pr2 t))) ∘e
( inv-left-unit-law-Σ-is-contr
( is-torsorial-Id' (pr1 t))
( pair (pr1 t) refl))))))
( count-Σ e
( λ t →
count-eq
( has-decidable-equality-is-finite (g (pr1 t)))
( b (pr1 t))
( pr2 t)))))
abstract
is-finite-base-is-finite-Σ-mere-section :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
type-trunc-Prop ((a : A) → B a) →
is-finite (Σ A B) → ((a : A) → is-finite (B a)) → is-finite A
is-finite-base-is-finite-Σ-mere-section {l1} {l2} {A} {B} H f g =
apply-universal-property-trunc-Prop H
( is-finite-Prop A)
( λ b → is-finite-base-is-finite-Σ-section b f g)
```
### If `B` is a family of finite inhabited types over a set `A` and `Σ A B` is finite, then `A` is finite
```agda
abstract
is-finite-base-is-finite-Σ-merely-inhabited :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} →
is-set A → (b : (a : A) → type-trunc-Prop (B a)) →
is-finite (Σ A B) → ((a : A) → is-finite (B a)) → is-finite A
is-finite-base-is-finite-Σ-merely-inhabited {l1} {l2} {A} {B} K b f g =
is-finite-base-is-finite-Σ-mere-section
( choice-is-finite-Σ-is-finite-fiber K f g b)
( f)
( g)
```
### If `B` is a family of finite types over `A` with finite complement, and if `Σ A B` is finite, then `A` is finite
```agda
abstract
is-finite-base-is-finite-complement :
{l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-set A →
is-finite (Σ A B) → (g : (a : A) → is-finite (B a)) →
is-finite (complement B) → is-finite A
is-finite-base-is-finite-complement {l1} {l2} {A} {B} K f g h =
is-finite-equiv
( ( right-unit-law-Σ-is-contr
( λ x →
is-proof-irrelevant-is-prop
( is-property-is-inhabited-or-empty (B x))
( is-inhabited-or-empty-is-finite (g x)))) ∘e
( inv-equiv
( left-distributive-Σ-coproduct A
( λ x → type-trunc-Prop (B x))
( λ x → is-empty (B x)))))
( is-finite-coproduct
( is-finite-base-is-finite-Σ-merely-inhabited
( is-set-type-subtype (λ x → trunc-Prop _) K)
( λ t → pr2 t)
( is-finite-equiv
( equiv-right-swap-Σ)
( is-finite-Σ
( f)
( λ x → is-finite-type-trunc-Prop (g (pr1 x)))))
( λ x → g (pr1 x)))
( h))
```